Subsolidus Phase Relations in the ZnS-In \mathbf{S}_{3} System: $\mathbf{6 0 0}$ to $\mathbf{1 0 8 0}{ }^{\circ} \mathrm{C}$

R. S. BOORMAN, J. K. SUTHERLAND
Mineralogical Department, Research and Productivity Council, Fredericton, New Brunswick, Canada

Received 2 January 1968

Eleven ternary compounds were synthesised, of which nine are new. The seven most ZnS -rich compounds form a series. Each has a primitive hexagonal lattice with $a=3.85 \pm 0.01 \AA$. The c-dimension varies from $37.47 \AA\left(39 \mathrm{ZnS}: 8 \mathrm{In}_{2} \mathrm{~S}_{3}\right)$ to $18.63 \AA$ ($18 \mathrm{ZnS}: 8 \mathrm{In}_{2} \mathrm{~S}_{3}$) with a periodicity of $3.14 \AA$ which can be related to a decrease in the ZnS content. One of the four remaining compounds ($12 \mathrm{ZnS}: 8 \ln _{2} \mathrm{~S}_{3}$) is triclinic, but at least two polytypes are present. The more common variety has the parameters: $a=3.86 \AA, b=15.48$ $\AA, c=3.54 \AA, \alpha=90^{\circ} 16^{\prime}, \beta=120^{\circ} 02^{\prime}$ and $\gamma=89^{\circ} 47^{\prime}$. The structure of the other polytype and of compounds $17 \mathrm{ZnS}: 8 \mathrm{In}_{2} \mathrm{~S}_{3}$ and $10 \mathrm{ZnS}: 8 \mathrm{In}_{2} \mathrm{~S}_{3}$ have not been determined.
Stoichiometric $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ has a rhombic hexagonal lattice ($a=3.86 \AA, c=36.95 \AA$). This ternary compound which has been synthesised previously is the only one to show appreciable solid solution. Approximately 2 mole $\% \mathrm{ZnS}$ is soluble in $\mathrm{Znln}_{2} \mathrm{~S}_{4}$ at $600^{\circ} \mathrm{C}$; this increases to 8 mole $\%$ at $1080^{\circ} \mathrm{C}$.

1. Introduction

Materials scientists have for some time been interested in compounds of zinc, indium and sulphur because of their optical and electrical properties [2, 13, 16, 17, 25]. Thus, while our studies have largely been confined to the composition of the naturally-occurring sulphides of zinc and indium [3], a growing interest in materials prompted us to investigate synthetic compounds on the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary and to establish the phase equilibria of these, many of which had not previously been prepared.

2. Previous Work

The $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary falls within the $\mathrm{Zn}-\mathrm{In}-\mathrm{S}$ system and a review of part of the work in this system is summarised below.

2.1. $\mathrm{Zn}-\mathrm{S}$

Sphalerite, wurtzite and the intermediate sphalerite-wurtzite polytypes are the only binary phases in the $\mathrm{Zn}-\mathrm{S}$ system. Allen and Crenshaw [1] proposed a first-order transition at $1020^{\circ} \mathrm{C}$ of sphalerite to wurtzite. Hill [9], on the other hand, suggested a higher order transition with

ZnS polytypes stable over the range 960 to $1020^{\circ} \mathrm{C}$. Scott and Barnes [15] recently indicated that phase changes in zinc sulphide are accompanied by a composition change. They suggested that wurtzite is sulphur-deficient relative to sphalerite, that the intermediate phases are not true polymorphs, and that wurtzite polytypism is a function of sulphur fugacity and temperature.

2.2. In-S

Stubbs et al [21] described four indium sulphides, $\beta \mathrm{In}_{2} \mathrm{~S}_{3}, \mathrm{In}_{3} \mathrm{~S}_{4}, \mathrm{In}_{5} \mathrm{~S}_{6}$, and InS , which they believed to be stable phases in the $\operatorname{In}-\mathrm{In}_{2} \mathrm{~S}_{3}$ system above $600^{\circ} \mathrm{C}$. Miller and Searcy [12] disproved the existence of $\mathrm{In}_{3} \mathrm{~S}_{4}$. The composition of $\mathrm{In}_{5} \mathrm{~S}_{6}$ has since been changed to $\mathrm{In}_{6} \mathrm{~S}_{7}$ [5, 10]. Zargarov and Gamidov [23] claimed to have synthesised a phase $\left(\mathrm{In}_{3} \mathrm{~S}_{5}\right)$ which is more sulphur-rich than $\mathrm{In}_{2} \mathrm{~S}_{3}$. The melting point of pure $\ln _{2} \mathrm{~S}_{3}$ is reported to be between 1090 and $1100^{\circ} \mathrm{C}$ [21].

2.3. $\mathrm{Zn}-\mathrm{In}$

A simple eutectic between the Zn and In liquidus curves is located at $3.1 \mathrm{at} . \% \mathrm{Zn}$ at
$144 \pm 1^{\circ} \mathrm{C}$. The solid solution of Zn in In and of In in Zn at the eutectic temperature was estimated to be approximately $0.45 \mathrm{at} . \%$ and $0.65 \mathrm{at} . \%$ respectively [8].

2.4. $\mathrm{Zn}-\ln -\mathrm{S}$

Two compounds, $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ and $\mathrm{Zn}_{3} \mathrm{In}_{2} \mathrm{~S}_{6}$, both of which occur on the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary, have been synthesised by other workers [7, 24]. Lappe et al [11] showed that $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ has hexagonal symmetry with a rhombohedral lattice ($a=3.85$, $c=37.06 \AA$). Donika et al [4] on a phase they indicated to be $\mathrm{Zn}_{3} \mathrm{In}_{2} \mathrm{~S}_{6}$, calculated a primitive hexagonal lattice with $a=3.85$, and $c=18.5 \AA$.

3. Experimental

3.1. Preparation of Starting Materials

The ZnS and $\mathrm{In}_{2} \mathrm{~S}_{3}$ end members were prepared by precipitation from aqueous solutions. Pure zinc ($99.999+\%$, ASARCO) and indium ($99.999+\%$, ASARCO) were dissolved in concentrated HCl . These solutions were evaporated and the chlorides redissolved in water. Hydrogen sulphide was then bubbled through each solution (pH 1.5 to 3.0) to precipitate $\mathrm{In}_{2} \mathrm{~S}_{3}$ and ZnS . The precipitates were washed, dried, ground and rewashed several times to remove the excess chlorides. Finally each sulphide was heated in a vacuum at approximately $500^{\circ} \mathrm{C}$ for at least 1 h to eliminate traces of ammonium salts, water and most of the excess sulphur.

3.2. Furnace Runs

Charges for the experimental runs weighed 50 to 100 mg and were prepared from various mole ratios of the ZnS and $\mathrm{In}_{2} \mathrm{~S}_{3}$ end members. These mixtures were placed in 6 mm OD (1.0 mm wall) vycor glass tubes which were evacuated at $25^{\circ} \mathrm{C}$ to a pressure of less than 1 torr before sealing.

All runs were equilibrated in electricallyheated vertical tube furnaces. The hot spot in each was located near the base and varied by less than $2^{\circ} \mathrm{C}$ over 75 mm . Temperatures were controlled to $\pm 10^{\circ} \mathrm{C}$ above $1000^{\circ} \mathrm{C}$ and to $\pm 5^{\circ} \mathrm{C}$ below $1000^{\circ} \mathrm{C}$. The study was carried out below $1100^{\circ} \mathrm{C}$ so as to remain in the subsolidus region and above $600^{\circ} \mathrm{C}$ to facilitate rapid equilibration.

Runs were allowed to equilibrate for a minimum of 36 h at temperatures above $650^{\circ} \mathrm{C}$. At the lowest temperature $602^{\circ} \mathrm{C}$ the charges were left in the furnace for up to 400 h to insure equilibration. At the termination of a run, each
charge was quenched in cold water, and the product examined under a binocular microscope before diffractometer smear mounts and polished sections were prepared.

4. Analytical Procedure

4.1. X-ray Analyses

Diffractometer scans from 0 to $90^{\circ} 2 \theta$ (iron filtered, cobalt $\mathrm{K} \alpha$ radiation) were run on each charge to determine the co-existing phases. In addition, X-ray powder patterns (114.6 cm camera) were obtained for each of the eleven ternary compounds synthesised. Indexing and lattice parameter determinations were carried out using a least mean squares refinement in a computer program [6].

4.2. Microprobe Analyses

The analyses were performed on an ActonCameca MS 64 electron microprobe, and the data processed by a computer program [14] which applied corrections for drift, dead time, background, efficiency of excitation, absorption and fluorescence [19].

Compound 72L (fig. 4) was used as a standard for analyses of the ternary $\mathrm{Zn}-\mathrm{In}-\mathrm{S}$ compounds. This compound was initially analysed against pure $\alpha \mathrm{ZnS}$ and $\beta \mathrm{In}_{2} \mathrm{~S}_{3}$ and the composition corresponded, within the limits of error, to that of stoichiometric $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$. The end member constituents were analysed against $\alpha \mathrm{ZnS}$ and $\beta \mathrm{In}_{2} \mathrm{~S}_{3}$.

The standards were run at the beginning and end of each set of analyses. A set consisted of from three to six grains for each sample with three repeated readings on each grain. The results were recast into mole $\% \mathrm{ZnS}$ and the error quoted is the standard error of the mean at 97.6% confidence. One hundred and thirty-one phases from 85 runs were analysed from a total of 227 runs.

5. Results

Eleven ternary compounds were synthesised in addition to the end members (Zn, In) S and ($\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}$, denoted A and M respectively. These eleven have been designated B, C, D, E, F, G, H1, H2, J, K, and L (figs. 1 and 4). Compounds G and L have been previously prepared but the remainder are new.

In those runs which contained only indium and sulphur and where more than $60 \mathrm{at} . \%$ of the mixture was sulphur, $\beta \mathrm{In}_{2} \mathrm{~S}_{3}$ and sulphur vapour were stable over our experimental temperature

Figure 1 Compounds on the $\mathrm{ZnS}-\beta \mathrm{In}_{2} \mathrm{~S}_{3}$ join in the $\mathrm{Zn}-\mathrm{In}-\mathrm{S}$ system at $950^{\circ} \mathrm{C}$; synthesised by previous workers.
range. Zargarov and Gamidov's $\mathrm{In}_{3} \mathrm{~S}_{5}$ [23] was not observed.
All charge products were coarsely crystalline, ranging in size from 0.1 mm in runs at $600^{\circ} \mathrm{C}$ to 5 mm and larger at temperatures above $900^{\circ} \mathrm{C}$. The ternary phases and $\alpha(\mathrm{Zn}, \mathrm{In}) \mathrm{S}$ exhibited hexagonal plates with platey cleavage, while $\beta(\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}$ formed octahedrons (fig. 2).

Phases B, C, D, and E are yellow; F and G also are yellow but with a greenish tint; H1 is brownish yellow. H 2 and J are also brownish yellow when formed above $800^{\circ} \mathrm{C}$ but are green at lower temperatures. Compound K has a bronze cast while crystals of L vary from redbrown to brown.

5.1. Crystallography

X-ray powder data from the recrystallised $\alpha \mathrm{ZnS}$, $\beta \mathrm{ZnS}$ and $\beta \mathrm{In}_{2} \mathrm{~S}_{3}$ starting materials compare favourably with previously published data (table I).
The unit cell size of $\beta(\mathrm{Zn}, \mathrm{In}) \mathrm{S}$ increases with increasing indium solubility from $5.4102 \pm$ $0.0003 \AA$ at $600^{\circ} \mathrm{C}$ to $5.4135 \pm 0.0003 \AA$ at $862^{\circ} \mathrm{C}$, the sphalerite-wurtzite inversion temperature. Reflections from co-existing ternary compounds interfere with wurtzite lines and hence accurate lattice parameters for the hexagonal $\alpha(\mathrm{Zn}, \mathrm{In}) \mathrm{S}$ phase could not be determined. However, both a and c appear to increase with increasing indium solubility. The effect of zinc substitution in $\mathrm{In}_{2} \mathrm{~S}_{3}$ on the cell parameters was not measured.

The different ternary phases have character

(a)

(b)

(c)

Figure 2 Photomicrographs: (a) crystal of compound H1 ($\times 8$); (b) crystal of compound H1 ($\times 56$) showing growth line at approximately 120°; (c) hexagonal plete of compound L with octahedron of $\beta(\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}(\times 8)$.

TABLE I Lattice parameters of the end members

End member	System	Space group		Lattice parameters \AA		
			This study	Other studies	Reference	
$\alpha \mathrm{ZnS}$	hexagonal	$P 6_{3} m c$	$a=3.820 \pm 0.005, c=6.249 \pm 0.005$	$a=3.820, c=6.260$	$[22]$	
$\beta \mathrm{ZnS}$	isometric	$F \overline{4} 3 m$	$a=5.4098 \pm 0.0003$	$a=5.4093 \pm 0.0002$	$[18]$	
$\beta \mathrm{In}_{2} \mathrm{~S}_{3}$	tetragonal	$14_{1} /$ amd	$a=7.606 \pm 0.001, c=31.8 \pm 0.1$	$a=7.623, c=32.36$	$[20]$	

istic diffraction patterns. As the ZnS content increases, the 2θ position of the principal reflection is shifted to a higher angle (fig. 3). The X-ray powder data for these phases are shown in the appendix (tables AI and AII). Compounds B,
$\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, and H 2 have hexagonal symmetry with primitive-type lattices. The length of the a and b axes is $3.85 \AA$, whereas c changes from $37.47 \AA$ for phase B to $18.63 \AA$ for crystals of compound H 2 , with a periodicity (increments)

Figure 3 X -ray diffractometer profiles illustrating 2θ angular positions for the principal reflection from each phase along the $950^{\circ} \mathrm{C}$ isotherm.
TABLE II Phases present on the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary

Phase		Temperature${ }^{\circ} \mathrm{C}$	Composition		Crystallography					
Analysed	Co-existing		Mole \% ZnS	Approx. formula	System	Lattice	Principal reflection		$\begin{aligned} & b \\ & (\pm 0 . \end{aligned}$	$\begin{aligned} & c \\ & (\pm 0.01 \AA) \end{aligned}$
$\alpha(\mathrm{Zn}, \mathrm{In}) \mathrm{S}$		> 862	92.4 (min)	(Zn, In) S	Hex.	P	101	3.82	3.82	$6.26(\alpha \mathrm{ZnS})$
$\beta(\mathrm{Zn}, \mathrm{In}) \mathrm{S}$		< 862	99.0 (min)	(Zn, In) S	Iso.	F	111	5.413	0.0003	
B	A1/C	>942	82.9 ± 0.2	39ZnS.8In ${ }_{2} \mathrm{~S}_{3}$	Hex.	P	0011	3.84	3.84	37.47
C	B/D	<942	82.6 ± 0.1	38ZnS. $81 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	P	0010	3.85	3.85	34.35
	A1/D	927-942	82.9 ± 0.2	$39 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$						
D	C/E	> 927	81.2 ± 0.2	$35 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	P	009	3.85	3.85	31.18
	A1/E	892-927	82.1 ± 0.4	$37 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$						
E	D/F	> 892	79.4 ± 0.2	$31 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	P	008	3.85	3.85	28.02
	A1/F	862-892	80.1 ± 0.1	$32 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$						
F	E/G	> 862	77.6 ± 0.1	$28 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$						
	A $2 / \mathrm{G}$	847-862	78.1 ± 0.3	$29 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	P	007	3.85	3.85	24.92
G	$\begin{aligned} & \mathrm{F} / \mathrm{H} 1 \\ & \mathrm{~F} / \mathrm{H} 2 \end{aligned}$	$\begin{aligned} & >914 \\ & 847-914 \end{aligned}$	75.0 ± 0.1	24ZnS. $8 \mathrm{In} \mathrm{n}_{2} \mathrm{~S}_{3}$	Hex.	P	006	3.85	3.85	21.79
	A $2 / \mathrm{H} 2$	803-847	75.3 ± 0.1	$24 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$						
H1	G/J	> 914	67.9 ± 0.2	$17 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Tricl.	?	050			
H2	$\begin{aligned} & \mathbf{G} / \mathbf{J} \\ & \mathrm{A} 2 / \mathbf{J} \end{aligned}$	$\begin{aligned} & 803-914 \\ & 600-803 \end{aligned}$	69.3 ± 0.1	$18 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	P	005	3.85	3.85	18.63
J	H1/K	> 914								
	H2/K	775-914	60.7 ± 0.1	$12 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Tricl.	P	040	3.86	15.48	3.54
	H2/L	600-775								
K	J/L	>775	56.0 ± 0.2	$10 \mathrm{ZnS} ..8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	?				
L	K/M	>775	$49.6 \pm 0.2(\max)$	(6-8) $\mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$	Hex.	R	009	3.86	3.86	36.95
	J/M	600-775	$50.2 \pm 0.2(\max)$							
$\beta(\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}$		600-1080	23.0 (max)	$(\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}$	Tetra.	I	213	7.61	7.61	31.76

of approximately $3.14 \AA$ (table II). Some preliminary work (L. Trembath, personal communication) with oscillation and rotation films on single crystals of phases F and G gave c dimensions one-half and twice those calculated from powder data. This suggests that polytypism may be present.

Compound Hl has strong intensity reflections in the same 2θ positions as the 000 lines from H 2 but, in addition, H 1 also has reflections which could not be indexed in the hexagonal system. The powder data for the compound which has not been indexed are shown in table AII.
Compound J has a number of reflections (00 l , $h 00, h 0 l$) which can be indexed in the hexagonal system. As $0 k 0$ or $h k l$ lines could not be indexed, the length of the b-axis must differ from a. By making b the principal axis approximately perpendicular to the hexagonal-like plates, all reflections have triclinic symmetry (table AI). The b-axis for this crystal is $15.48 \AA$, hence the $3.14 \AA$ periodicity along c, which is present in the hexagonal crystals, has been transferred to the b-axis in the triclinic crystals. In addition to this form, a few crystals of the same composition were synthesised in which only the basal reflections could be indexed in the hexagonal system. This suggests that these crystals might also be triclinic, but that neither a nor b is $3.86 \AA$ (52 ; table AII).

The majority of our runs with starting mixtures in the vicinity of the composition of compound K were carried out at temperatures under $950^{\circ} \mathrm{C}$. Large single crystals of K were not obtained and the powder patterns of the charge products were always complicated by lines from either compounds L or J . In some instances the basal reflections of compound K appeared as doublets, as shown on fig. 3. K1 with a principal basal reflection at approximately $26.0^{\circ} 2 \theta$ appears to be more stable with compound L whereas K2 with its principal reflection at approximately $26.2^{\circ} 2 \theta$ is more stable with compound J .
The lattice parameters determined from our powder data for stoichiometric $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ (compound \mathbf{L}, table II) are in agreement with those given by Lappe et al [11]. The other previously synthesised phase has been described as having the composition $\mathrm{Zn}_{3} \mathrm{In}_{2} \mathrm{~S}_{6}$ [24]. Donika et al [4] calculated lattice parameters of $a=3.85 \pm 0.02$ and $c=18.5 \pm 0.03 \AA$ for a phase which they believed to have the composition $\mathrm{Zn}_{3} \mathrm{In}_{2} \mathrm{~S}_{6}$. However, in our work we found that a compound with this composition, phase G, has a c of
$21.79 \AA$. Phase H 2 which co-exists with G over the range 803 to $914^{\circ} \mathrm{C}$ (fig. 4) has lattice parameters ($a=3.85 \pm 0.01$ and $c=18.63 \pm$ $0.01 \AA$) similar to those given by Donika et al. It is possible that the synthetic product studied by these workers yielded two co-existing phases, phase G which they analysed and phase H2 on which they did their structural analyses, thinking it to be phase G.

5.2. Chemistry

The chemistry of the binary system is summarised in table II and in figs. 4 and 5.

Phase boundaries were fixed from the weighted average of all the analyses of a phase on either side of the boundary at various temperatures. With the exceptions of compound L and the end members (Zn, In) S and $(\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}$, all boundaries are vertical. Solid solution in each phase is within the limits of analytical error.

On the (Zn, In)S solvus, the solubility of indium in sphalerite increases from less than 0.15 $\mathrm{wt} \%$ at $600^{\circ} \mathrm{C}$ to approximately $2.3 \mathrm{wt} \%$ at $862^{\circ} \mathrm{C}$, the temperature of the sphaleritewurtzite inversion. The solubility of indium in wurtzite increases from $5.5 \mathrm{wt} \%$ at the inversion to approximately $17.7 \mathrm{wt} \%$ at $1055^{\circ} \mathrm{C}$.

Approximately 23 mole $\% \mathrm{ZnS}$ is soluble in $\mathrm{In}_{2} \mathrm{~S}_{3}$ at $600^{\circ} \mathrm{C}$; this decreases to 15 mole $\%$ at $1080^{\circ} \mathrm{C}$. The slope of the boundary between compounds L and M is approximately parallel to that of the ($\mathrm{In}, \mathrm{Zn})_{2} \mathrm{~S}_{3}$ solvus (fig. 4). Approximately 8 mole $\% \mathrm{In}_{2} \mathrm{~S}_{3}$ is soluble in $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ at $1080^{\circ} \mathrm{C}$, this decreases to 2 mole $\%$ at $600^{\circ} \mathrm{C}$. Where compound L co-exists with the more zinc-rich compounds, J and K, at 50.2 and 49.6 mole $\% \mathrm{ZnS}$ respectively, there is no measurable solid solution effect and the boundaries are vertical.

Table II shows the stability range of each phase along the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary. As compounds C , D, E, F and G become stable with a (Zn, In)S phase, there is a slight shift in their composition towards increased ZnS (fig. 5; table II). The compositions of H2 and J are apparently not affected by changes in their co-existing assemblage.

Of the nine samples which contained compound K and were analysed, six showed doublets on the major X-ray reflection. 27 K $(56.29 \pm 0.76$ mole $\% \mathrm{ZnS}), 35 \mathrm{~K}(54.82 \pm 1.38)$ and 48 K (55.75 ± 0.24) produced only single reflections. 27 K co-existed with compound J, while the other two were in equilibrium with L .

Figure 4 Phase diagram of $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary (600 to $1080^{\circ} \mathrm{C}$). Numerical data for figs. 4 and 5 are available in a table listing the temperature, starting mixture, length of run and the phases both identified and analysed. Copies of these tables can be obtained by writing to the authors.

Hence, there is no compositional difference between K1 and K2 (fig. 3) within the limits of analytical error. The doublets may indicate polytypism.

6. Conclusions

Eleven ternary compounds, nine of which are new, were synthesised in the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ system over the range 600 to $1080^{\circ} \mathrm{C}$. X-ray powder patterns for compounds B, C, D, E, F, G and H 2 can be indexed on primitive lattices within the hexagonal system. Compound L is also hexagonal but has the rhombic lattice. Single crystal X-ray work is required to study poly-
typism in these compounds and to resolve the structures of compounds $\mathrm{J} 2, \mathrm{H} 1$ and K .

The lattice parameters for compound L $\left(\mathrm{ZnIn}_{2} \mathrm{~S}_{4}\right)$ calculated in this study agree with those previously determined [20]. However, the length of the c-axis of the other previously synthesised compound, $\mathrm{G}\left(\mathrm{Zn}_{3} \mathrm{In}_{2} \mathrm{~S}_{6}\right)$, as determined by Donika et al [4] differs from our cell size. Their result corresponds more closely to our value for H 2 , a compound $\left(\mathrm{Zn}_{9} \mathrm{In}_{8} \mathrm{~S}_{21}\right)$ which contains less zinc.
The new compounds and compound G have compositions that change progressively in a step-like manner between $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ and ZnS .

Figure 5 Enlargement of the more congested portion of the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary.

Similar variations in the electrical and optical properties can be expected and investigation of these might lead to some interesting findings.

Although the fundamental optical, electrical and luminescence properties of $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ have previously been studied $[16,17]$, the solid solution of $\mathrm{In}_{2} \mathrm{~S}_{3}$ in this compound has hitherto not been observed. In the light of this new information, the influence of chemical variation on properties should also be determined. The substitution of zinc in $\mathrm{In}_{2} \mathrm{~S}_{3}$ and indium in the ZnS phase will also affect the semiconducting properties of these compounds.
This study has been confined to the $\mathrm{ZnS}-\mathrm{In}_{2} \mathrm{~S}_{3}$ binary, and additional work is still required to complete the phase relationships within the three component system zinc-indium-sulphur. Once the chemistry of the system is known, efforts can
be concentrated on the synthesis of ultra pure single crystals which will be needed before an extensive study can be made of their optical and electrical properties.

Acknowledgement

We wish to thank the National Research Council of Canada for partial support of the study.

References

1. e. T. Allen and J. L. CRENSHAW, Am. J. Sci. 34 (1912) 341.
2. J. A. BEUN, R. NITSCHE, and M. LICHTENSTEIGER, Physica 26 (1960) 647.
3. R. S. boorman and D. abbott, Canad. Min. 9 (1967) 166.
4. F. G. DONIKA, G. A. KIOSSE, S. I. RADAUTSAN, s. A. SEMILETOV, and V. F. ZHITAR, Kristallografiya 12 (1967) 854.
5. w. J. duffin and J. H. C. Hogg, Acta Cryst. 20 (1966) 566.
6. H. T. EVANS, D. E. APPLEMAN, and D. handwerker, (Abs) Am. Cryst. Assoc. Ann. Meeting (Cambridge, Mass, 1963).
7. H. HAHN and W. Klinger, A. anorg. Allg. Chem. 263 (1950) 117.
8. M. HANSEN and K. ANDERKO, "Constitution of Binary Alloys" (McGraw-Hill, New York, 1958).
9. V. G. Hill, Canad. Min. 6 (1958) 234.
10. J. H. C. HoGG and w. J. Duffin, Acta. Cryst. 23 (1967) 111.
11. F. LAPPE, A. NIGGLI, R. NitsCHE, and J. G. white, Z. Krist. 117 (1962) 146.
12. A. R. Miller and A. W. Searcy, J. Phys. Chem. 69 (1965) 3826.
13. W. REHWALD and G. harbeke, J. Phys. Chem. Solids, 26 (1965) 1309.
14. J. RUCKLIdGe, J. Geol. 75 (1967) 126.
15. S. D. SCOTT and H. L. BARNES, (Abs) Geol, and Mineral. Assoc. Int. Meeting (Kingston, Ontario, 1967).
16. s. Shionoya and A. ebina, J. Phys. Soc. Japan 19 (1964) 1150.
17. s. Shionoya and y. TAMOTO, ibid 1142 .
18. B. J. SkinNer and p. b. barton, Amer. Min. 45 (1960) 612.
19. J. V. SMITH, J. Geol. 73 (1965) 830.
20. G. A. STEIGMANN, H. H. SUTHERLAND, and J. goodyear, Acta. Cryst. 19 (1965) 967.
21. M.F.STUBBS, J. A. SCHUFLE, A.J.THOMPSON, and J. M. duncan, J. Amer. Chem. Soc. 74 (1952) 1441.
22. H. E. SWANSON and R. K. FUYAt, U.S. Nat. Bur. Stand circ. 539, vol. 22 (1953).
23. M. I. Zargarov and R. s. Gamidov, Izv. Akad. Nauk. SSSR Neorg. Meter. 3 (6) (1967) 1085.
24. V. ZHITAR, N. GORYUNOVA, and S. RADAUTSAN, Izv. Akad. Nauk. MSSR 2 (1965) 9.
25. V. ZHITAR, YA. OKSMAN, S. RADAUTSAN, and V. smirnov, Phys. Stat. Sol. 15 (1966) K105.
The X-ray crystallographic data for all phases synthesised are given in the following tables.

TABLE Al continued

TABLE Al continued

TABLE AI continued

$\mathrm{H} 2 ; 18 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$ (approx.) hexagonal; $a=3.85 \pm 0.01 \AA ; c=18.63 \pm 0.01 \AA$					$\begin{aligned} & \mathrm{J} ; 12 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3} \text { (approx.); triclinic; } \\ & a=3.86 \pm 0.01 \AA ; b=15.48 \pm 0.01 \AA ; \\ & c=3.54 \pm 0.01 \AA ; \alpha=90^{\circ} 16^{\prime} ; \beta=120^{\circ} 02^{\prime} ; \gamma=89^{\circ} 47^{\prime} \end{aligned}$					$\begin{aligned} & \mathrm{L} ; 8 \mathrm{ZnS} . \mathrm{In}_{2} \mathrm{~S}_{3} \text { (approx.); hexagonal (rhomb.) } \\ & a=3.86 \pm 0.01 \AA ; c=36.95 \pm 0.01 \AA \end{aligned}$			
$h k I$		I (est.)	d (meas.)	d (calc.)	$h k l$		I (est.)	d (meas.)	d (calc.)	$h k l$	I (est.)	d (meas.)	d (calc.)
21	7	3	1.1390	1.1399	$0 \quad 11$	07			1.407				
30	1	3	1.1110	1.1106	110	0 \}	6	1.406	1.405				
10	16		*	1.0992	26	0)			1.403				
00	$17)$		\dagger	1.0956	$-2-8$	1	1	1.368	1.368				
30	3 ¢			1.0952	18	1		*	1.335				
21	9	3	1.0772	1.0772	-18	$2\}$	3		1.303				
30	5	1	1.0661	1.0661	111	$0\}$	3	1.300	1.297				
20	14	2	1.0403	1.0403	$\begin{array}{ll}-2 & 7\end{array}$	$2\}$			1.291				
00	18		1.0353	1.0348	012	05	2	1.292	1.290				
11	$16\}$	4	0.9967	0.9964	-3-2	1	7	1.2517	1.2538				
20	15 $\}$	4	0.9967	0.9962	21	1	1	1.2266	1.2268				
10	18	3	0.9889	0.9884	-1 12	$1)$	2	1.1923	1.1937				
$\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}$	19 $\left.{ }^{1}\right\}$	3	0.9808	0.9803	0 13	$0\}$	2	1.1923	1.1905				
30	9 ${ }^{\text {S }}$	3	0.9808	0.9800	-2 0	35			1.1715				
22	0	3	0.9632	0.9635	-2 11	35	1	1.1690	1.1677				
30	10	3	0.9553	0.9552	-1 10	2	3	1.1622	1.1624				
10	19	1	0.9413	0.9406	210	0	2	1.1360	1.1359				
22	5	1	0.9333	0.9328	-1 13	12	1		1.1136				
31	2	1	0.9212	0.9212	30	05	1	1.1135	1.1133				
20	$17\}$		0.9159	0.9159	-3-7	2	1	1.0863	1.0865				
31	3 5	6	0.9159	0.9156	-15	3	2	1.0786	1.0786				
11	18	1	0.9122	0.9117	27	1	2	1.0763	1.0752				
31	4	1	0.9080	0.9080	$\begin{array}{ll}-1 & 6\end{array}$	$3\}$	5		1.0506				
					114	$0\}$	5	1.0506	1.0499				
					-2-13	1	4	1.0150	1.0144				
					37	0	2	0.9960	0.9949				
					04	3	4	0.9870	0.9879				

TABLE All X-ray diffraction data for unindexed phases. Cobalt radiation ($K \alpha=1.79021$ \&)

$\mathrm{H1} ; 17 \mathrm{ZnS.81n} \mathrm{~S}_{3}$ (approx.)			J2; $12 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$ (approx.)			$\mathrm{K} ; 10 \mathrm{ZnS} .8 \mathrm{In}_{2} \mathrm{~S}_{3}$ (approx.)			
2θ	d	I (est.)	2θ	d	I (est.)	2θ	d	I (est.)	Comment
16.57	6.215	9	6.68	15.360	3	7.19	14.280	1	
27.76	3.732	10	13.31	7.725	4	7.40	13.880	2	
31.19	3.331	10	19.99	5.1505	7	11.10	9.250	1	
*32.52	3.197	1	26.79	3.864	10	16.66	6.185	1	
*33.79	3.080	4	31.14	3.335	3	21.49	4.800	2	
*34.55	3.015	4	31.89	3.259	3	22.27	4.634	1	
*36.40	2.865	4	$\dagger 32.32$	3.217	2	25.20	4.101	2	L
$\begin{array}{r} * 37.40 \\ 39.25 \end{array}$	$\begin{aligned} & 2.792 \\ & 2.665 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{array}{r} \dagger 33.07 \\ 33.60 \end{array}$	$\begin{aligned} & 3.146 \\ & 3.098 \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$	$\begin{aligned} & 26.00 \\ & 26.00 \end{aligned}$	$\left.\begin{array}{l} 3.980 \\ 3.950 \end{array}\right\}$	10	$\begin{aligned} & \text { K1 } \\ & \text { K2 } \end{aligned}$
*43.51	2.415	9	$\dagger 34.85$	2.985	1	26.70	3.877	4	J
45.18	2.385	3	$\dagger 35.95$	2.899	1	31.21	3.328	7	
*52.54	2.365	1	$\dagger 38.52$	2.714	8	32.09	3.239	8	
*54.17	1.9661	3	$\dagger 39.90$	2.624	1	34.72	3.001	1	
55.40	1.9257	6	40.58	2.582	2	36.20	2.880	1	
57.50	1.861	3	$\dagger 43.03$	2.441	1	38.60	2.708	8	
58.23	1.8395	1	$\dagger 44.78$	2.351	1	41.11	2.550	1	
*59.38	1.8075	5	47.80	2.2058	1	43.46	2.418	1	
63.06	1.7116	5	$\dagger 48.20$	2.1904	1	48.87	2.164	1	
63.73	1.6960	1	$\dagger 50.08$	2.087	6	49.62	2.1306	1	
			$\dagger 53.93$	1.974	1	55.31	1.929	7	
			55.23	1.931	8	59.80	1.7955	9	
			55.88	1.910	1	62.22	1.7323	8	
			59.36	1.808	1	63.05	1.712	8	
			$\dagger 60.19$	1.785	7	65.98	1.644	1	
			62.49	1.7252	8	69.36	1.573	2	
			+65.97	1.644	1	70.54	1.5501	3	
			$\dagger 69.29$	1.5746	2				

